85. Stereoselective Reduction of δ -Hydroxy- β -ketoesters

by Faizulla G. Kathawala, Bernhard Prager, Kapa Prasad*, Oljan Repič, Michael J. Shapiro, Russell S. Stabler, and Leo Widler¹)

Sandoz Research Institute, East Hanover, New Jersey 07936, USA

(10.11.86)

The reduction of δ -hydroxy- β -ketoesters 1 was investigated with three different reducing agents. In several instances, high selectivity in favor of *syn*-1,3-diols was observed.

Stereoselective preparation of the 1,3-diol function has great utility in synthetic organic chemistry due to the occurrence of these fragments in several natural products. In connection with our work on compactin analogues [1], we needed an efficient and general method for preparing syn-1,3-diols.

Towards this objective, we have prepared [2] a series of δ -hydroxy- β -ketoesters 1 (Scheme 1) by the addition of acetoacetate dianion to the respective aldehydes and investigated their reductions with different agents.

Stereoselective reductions of β -hydroxy-ketones utilizing metal-chelation control have recently been reported in the literature. The boron-chelate method [3], which gives excellent selectivity in favor of the *syn*-diols, invokes cyclic complexes **3** for explaining the stereochemical outcome of the reduction. In the alternative Zn(BH₄)₂ method [4], the setup for the reduction is presumed to be **4**.

At the outset of our investigations with δ -hydroxy- β -ketoesters, we were intrigued by the possibility that a simple H-bond as shown in 5 may provide a sufficiently strong bridge for achieving the desired *syn*-selectivity. Accordingly, we examined the hydrogenation of $1a^2$) using 5% Pt/C (room temperature, 50 psi) in MeOH. Under these condi-

¹) Present address: Ciba-Geigy AG, CH-4002 Basel.

²) All the hydroxy-ketoesters 1a-k described are derived from the addition of acetoacetate dianion to the corresponding aldehydes, following [2].

tions, the hydrogenation of the olefinic double bond was faster than that of the desired C=O bond. When the hydrogenation was allowed to proceed for three days, the diol 2a' was isolated in 60% yield. Interestingly, the product was found to be stereochemically completely homogeneous, and the spectroscopic data³) indicated it to be pure *syn*-isomer. The relative configuration of the two OH groups was further confirmed by the transformation to the *trans*-lactone 7.

Addition⁴) of FeCl₂ to the hydrogenation mixture enhanced the reduction rate of the carbonyl group, possibly *via* complex 6, but gave a *syn/anti* diastereoisomeric ratio of 9:1. On the other hand, 1d and 1e (see *Table 1*) exhibited the same selectivity with or without FeCl₂. As the hydrogenation is faster in the presence of FeCl₂, this method (*Method A*) was examined in greater detail. It turned out that the ratio of the *syn-* and *anti-*isomers formed in these hydrogenations is dependent on the size of groups R and R' present in the

Starting Ketone	R	R′	Product ^a)	syn/anti Ratios (yield [%])		
				Method A ^b)	Method B ^b)	Method C ^b)
1a	$CH_3CH=CH(E)$	CH ₃	2a'	90:10(90)		
	•	-	2a		90:10(70)	91:9(69)
1b	CH3CH=CH	C_2H_5	2b'	76:24(63)		
	•		2b		-	90:10(80)
1c	CH₃CH=CH	(CH ₃) ₃ C	2¢'	70:30(82)		
			2c		85:15(99)	80:20(87)
1d	CH ₂ =CH	C_2H_5	2ď	78:22/74)		
			2d		90:10(85)	89:11(48)
1e	PhCH=CH(E)	CH_3	2e'	79:21(70)		
			2e		90:10(89)	92:8(60)
1f	Ph	C_2H_3	2f	66:34(69)	87:13(34)	82:18(68)
1g	$(CH_3)_2CH$	C_2H_5	2g	75:25(77)	°)	92:8(75)
ih	(CH ₃) ₃ C	C_2H_5	2h	70:30(85)	°)	75:25(92)
1i	(CH ₃) ₃ C	(CH ₃) ₃ C	2i	56:44(93)		65:35(76)
1j	PhCH ₂ OCH ₂	C_2H_5	2j	52:48(25)	75:25(66)	60:40(51)
1 k	(t-Bu)Ph2SiOCH2	C_2H_5	2k	51:49(62)	90:10(82)	92:8(87)

Table 1. Stereoisomer Ratios in the Reduction of δ -Hydroxy- β -ketoesters

^a) All the primed numbers (2a', etc.) correspond to those diols in which the olefin was reduced by hydrogenation.
^b) Method A: FeCl₂, H₂, 50 psi, 20°, MeOH if R'=CH₃, otherwise EtOH, 18 h.

Method B: Et₃B, air, THF, 20°, 2 h; - 78°, NaBH₄, 18 h.

Method C: $Zn(BH_4)_2$, Et_2O_1 , -20° , 30 min.

^c) The isolation of diol presented problems due to incomplete hydrolysis of boronates.

³) ¹³C-NMR (CDCl₃) of **2a'** (syn-isomer): 172.80; 71.89; 69.00; 51.71; 42.31; 41.61; 40.01; 18.46; 13.99. ¹³C-NMR (CDCl₃) of **7**: 171.63; 75.91; 61.75; 38.11; 37.18; 35.26; 17.72; 13.44.

⁴) On addition of FeCl₂ to the β -ketoester, the solution turns dark red; the color disappears on complete hydrogenation.

starting ketoesters: the smaller the size of R and R', the better the selectivity in favor of the syn-isomer.

With these results in hand, we turned our attention to the applicability of literature methods, *i.e.* the boron-chelate method [3] (BEt₃, air, THF, 20°, 2 h; -78° , NaBH₄, 18 h; *Method B*) and the zinc-borohydride method [4] (Zn(BH₄)₂, ether, -20° ; *Method C*), for the stereoselective reduction of the above hydroxy-ketoesters. The results are presented in *Table 1*. It appears that *Methods B* and *C* are generally comparable in their *syn*-selectivity and that the selectivity does not depend on the substituents R and R' except when R contains a competing chelating atom (see 1j).

The *syn/anti* ratio was estimated on the basis of the relative intensity of the two sets of C(13) signals of the stereogenic [5] C-atoms. The chemical shift values are listed in *Table 2*. The accuracy of the ¹³C-NMR method was counter-checked by HPLC with **1c** and **1i**.

Compound	syn-lsomer		anti-Isomer	
	$\overline{C(\delta)}$	C(β)	$\overline{\mathrm{C}(\delta)}$	C(β)
2a	72.57	68.12	69.70	65.42
2a'	71.89	69.00	68.53	65.58
2b	72.53	68.15	69.70	65.44
2b'	71.92	69.06	68.56	65.67
2c	72.59	68.39	69.85	65.70
2c'	71.80	69.23	68.53	65.82
2d	72.56	68.17	68.87	65.41
2d'	73.26	68.85	69.91	65.47
2e	72.51	68.16	69.78	65.49
2e′	71.37	68.93	68.28	65.62
2f	74.28	68.53	71.04	65.50
2g	76.91	69.15	73.32	65.76
2h	79.89	69.29	75.66	65.99
2i	80.12	69.73	75.63	66.17
2j	70.43	68.87	67.60	65.35
2k	71.64	68.83	67.61	65.11

Table 2. ¹³C Chemical Shifts of the Two Stereogenic C-Atoms in the Diols 2 and 2'

Further work on the selective reductions of related optically active hydroxyketoesters, which could result in synthetically useful 1,3-diol derivatives, is in progress.

REFERENCES

- a) J. R. Wareing, C. E. Fuller, F. G. Kathawala, 185th ACS National Meeting at Seattle, Abstract No.11, March 1983; b) K. Prasad, O. Repič, *Tetrahedron Lett.* 1984, 25, 4889, and ref. cited therein.
- [2] St. N. Huckin, L. Weiler, Can. J. Chem. 1974, 52, 2157.
- [3] K. Narasaka, F.-C. Pai, Tetrahedron 1984, 40, 2233.
- [4] T. Nakata, Y. Tani, M. Hatozaki, T. Oishi, Chem. Pharm. Bull. 1984, 32, 1411.
- [5] K. M. Mislow, J. Siegel, J. Am. Chem. Soc. 1984, 106, 3319.